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Conclusions 

Calculated structure factors based on a model that in- 
cludes the effects of a tetrahedral and a fourth order 
cubic distortion of the spherical 'prepared' charge dis- 
tribution have given a highly significant improvement 
in the fit to the diamond powder measurements of 
G6ttlicher & W61fel (1959) and to the silicon single 
crystal data of Hattori et al. (1965), when the HF wave 
functions of Clementi (1965) are used to describe the 
spherical 'prepared' distribution. 

It is maintained that it is preferable to use full- 
matrix least-squares, combined with the significance 
tests of Hamilton (1964, 1965a) to analyse the com- 
plete set of experimental data for bonding features 
since in this way more information is obtained about 
the parameters that define the more complicated struc- 
ture factor model. This point is becoming well rec- 
ognized and has been used by Rouse, Willis & Pryor 
(1968) to analyse their neutron diffractioa data on UO2. 

The necessity for placing restrictions on the form of 
the radial functions associated with the non-spherical 
distortions, the large e.s.d.'s of the distortion param- 
eters and the dependence of the parameter values on 
the basis wave functions chosen to describe the spher- 
ical 'prepared' charge distribution indicate the need for 
exercising caution in analysing the experimental meas- 
urements for bonding features. 

Some of the calculations described in this paper were 
carried out at the Australian Atomic Energy Commis- 
sion Research Establishment and were partly financed 
by a grant from the Australian Institute of Nuclear 
Science and Engineering. 
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The Effect of Absorption in the Small Angle Diffraction of X-rays from Stacked Lamellae 
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An expression for the scattering from a regular stack of lamellae is developed, maintaining an absorp- 
tion term in the calculation. The effect of the absorption is to broaden peaks at small Bragg angles. The 
lzeaks sharpen with increasing order of diffraction. An expression for the lower angular limit of observ- 
able diffraction is evolved. 

Introduction 

The use of X-ray small angle scattering is widespread 
in the study of stacked lamellar polymer systems (see 

* On leave from Department of Chemical Engineering, 
University of Delaware, Newark, Delaware 19711. 

Geil, 1963, for a review) and has recently been used to 
study lamellar spinodal decomposition in an A1-Zn 
alloy (Rundman & Hilliard, 1967). The scattering by 
such systems yields peaks at small angles. In polymeric 
systems several orders are sometimes observed. Taking 
the stacking to be regular, the small angle peaks are 
conveniently treated as a diffraction phenomenon. The 
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positions of the peaks are given by Bragg's law. Such 
systems have been treated in mathematical detail by 
Hosemann & Bagchi (1962), in which treatment varia- 
tion in lamellar thicknesses, packing irregularities, and 
finite stacks have been included. A treatment of the 
simple system of infintely wide plates in perfectly regu- 
lar stacking is analyzed in an appendix of a paper by 
Schultz, Robinson & Pound (1967). However, in all 
treatments the effects of absorption have been neg- 
lected. In this brief paper the scattering of the regular 
system is re-analyzed, including art absorption term. It 
is shown that the absorption term (1) causes peak 
broadening to increase with decreasing scattering angle, 
(2) causes an infinite stack to appear finite, and (3) sets 
a small angle limit on the observability of the scattering 
peak. 

One is lead intuitively to these results. Consider an 
alternating periodic sequence of lamellae of types A 
and B as in Fig. 1. Consistent with the known structure 
of polymeric materials or spinodally decomposing 
systems the spacing d is taken to be of the order of 
100/k. In traversing the system of plates at the Bragg 
angle the intensity of the beam is attenuated as shown 
in Fig. 1. If d is large, the attenuation can be appreci- 
able. Thus, the stack appears to be limited to only a 
few elements; the beam intensity vanishes with further 

penetration. Effectively a particle size broadening is 
set up. The relative penetration increases however, 
with higher order peaks, as illustrated, since the path 
traversed between repeat elements is shortened. 

Analysis 

The scattering system, composed of alternating A and 
B plates, is illustrated in Fig. 1. It is assumed now that 
the plates are unlimited in lateral extent. The density 
function for such a system is given by 

N 

O(x)= Z(OAPI+oBP2)*6(x-nd) (1) 
n = 0  

in which the asterisk denotes the convolution operation, 
QA and QB are the average densities within the A and B 
plates respectively, d is the repeat spacing and the 
fractions Pa and Pz are defined by 

1 i f 0 < x < /  
Px = 0 if l < x < d  

(2) 
P2 = { 0 i f 0 < x < l  

1 if l < x < d .  

The amplitude of scattering, A(S), by such a system, 
when absorption is neglected, is 

(b) 

Fig. 1. The absorption problem in scattering from stacked lamellae. (a) and (b) show 1 st and 2nd order diffraction from an alter- 
nating, periodic stack of A and B plates of repeat spacing d. As the beam tranverses the stack, it is attenuated less severely in 
the second order than in the first. 
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where 

(, 

A(S)= IQ(x) exp (2z~iSx)dx, (3) 

S =  2 sin 0/2. (4) 

When absorption is included, (3) becomes 

A(S)=IQ(x)exp(-21~x)exp(2rciSx)dx-~- . (5) 

Inserting (1) into (5), we have 

A(S)= ~ [(QAPI+~BP2)*5(x--nd)I 
n = O  0 

× exp ( -  ~-2/t x) exp (2~ziSx)dx . (6) 

It is pertinent at this juncture to digress in order to 
develop a theorem which is useful in evaluating (6). 
Consider now the general integral, 

F(S)= [g(x),h(x)]L(S,x) exp (2niSx) dx,  (7) 
0 

which is of the form of (6). Expanding the convolution 
and using the substitution x = u + v we have, 

F(S)= lo [ fog(u)h(x-u)du ] L(S,x) exp (2niSx)dx 

l [I ] = h(x-  u)L(S, x) exp (2z~iSx)dx g(u)du 
0 0 

= h(v)L(S, u + v) exp [2rciS(u + v)]dv 
0 - - u  

x g(u)du. (8) 

If, now, 
L(S, u + v) = L(S, u)L(S, v) , (9) 

and if h(v) is zero for all v < 0, then 

F(S)= Io [ Ioh(V)L(S,v) 

x exp (2rciSv)dv] g(u)L(S, u) exp (2zriSu)du 

= [ f ;  g(u)L(S,u)exp (2z~iSu)du] 

[fo   )exp (10) 

The interrelation expressed by (7) and (10) is formally 
similar to the convolution theorem. It is, however, 
different in that (a) the limits run from 0 to c~ rather 
than - c~o to 0% (b) a factor L(S, x) is incorporated and 
must possess the special property of equation (9), and 
(c) one of the functions g or h must be non-zero only in 
the positive half-plane. 

Our function exp (-21zx/2S) has the property of (9) 
and the quantity (oAPx +oBPz) is zero for all x in the 
negative half-plane. Thus the modified convolution 

theorem just derived can be used to expand equation 
(6). Thus, 

A(S)=n= ° .J exp - )-~S " 

exp(2~iSx)dx] [l  5(x-nd)exp ( -  2/Zx) a;~ • 

exp (2z~iSx)dx] } , ( l l )  

where/z is the linear absorption coefficient. The ab- 
sorption term derives from the path length 2x/sin 0 = 
4x/2S traversed by a beam incident at angle 0 to the 
plane of the plates. 2, rather than 4, is used in the ex- 
ponential since we deal at present with an amplitude, 
not an intensity. The first factor on the right side of (6) 
is the structure factor and determines the peak inten- 
sities. The second factor defines the positions and 
breadths of the scattering peaks. We shall confine our 
attention to the second factor, the lattice factor. Using 
the substitution 

~=2#/2 (12) 

and expanding in the usual way, the lattice factor 
Z(S) becomes 

Z(S)= 1 -exp  (-o~Nd/S) exp (2rciSNd) 
1 ,exp (Z~Zd/S) exp (2~iSd~,  (13) 

where N is the number of plates in the stack. The 
intensity function I(S) is proportional to Z*(S) Z(S): 

I(S)= C,Z*(S) Z(S)= C, 
1 + exp ( -2aNd~S) -  2 exp ( -  o:Nd/S) exp (2rcSNd) 

i-3~-exp ( -2~d] /S) -2  exp('&-d/S) exp (2rcsd} J 

(14) 

where C1 contains the structure factor. 
If the number of plates N is large, then the absorp- 

tion terms in the numerator of (14) are very small and 
can be neglected. In this case, (14) becomes 

I(s)=Cl[1 +exp (-2~d/S) 
- 2  exp (-o~d/S) c o s  ( 2 / r S d ) ]  - 1  . (15) 

The peak breadth at half intensity can now be deter- 
mined. In general, the absorption exponentials are 
near unity and can be expanded according to exp a =  

,=0 nT. to the second order. Further, the position of 

the peak is shifted at most only very slightly from 
S= m/d. Hence, the peak intensity I~ is given approx- 
imately by 

I~ = Ca(re~adZ) 2 . (16) 

The value of S at half intensity is given by 

½(c~dZ/m)-Z= [1 +exp ( -  2c~d/S) 
- 2  exp (-ad/S) cos (2z~Sd)] -1. (17) 
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The half height value of S is assumed for now to 
deviate rather little from m/d. We define 

¢ = m - S d .  (18) 
Thus, 

cos (2rcSd) = cos (2tee) ~ 1 - 2rcZe 2 . (19) 

Inserting (19) into (17), we have 

½(oMZ/m) z= 1 +exp ( -  2ocd/S) 

-2(1-2rcze z) exp ( - c t d / S ) .  (20) 

The exponential terms progress only very slowly from 
unity. Thus the controlling term on the right of (20) 
is the one in e. Thus, to a very good approximation, 
(20) can be written 

(m/ced2) 2 = 1/87zZe 2 . (21) 

Substituting (18) for e in (21), we have for the position 
S½ at half intensity, 

l/8rc(1- LS½)=(oM2/mZ)=oeL 2 (22) 

where L = d / m  and L S = I  at the Bragg position. 
Finally, the half breadth at half height is defined by 

1 
A(LS)= ~ aL E . (23) 

Apparent stack size and the limiting angle of resolution 

We have seen that the effect of absorption is to broaden 
low angle diffraction peaks. The broadening is due to 
the inability of the beam to penetrate a large number of 
repeat units. Thus, an unbounded stack of lamellae 
appears as a limited stack of N elements. The value of 
N is determined, by use of the Scherrer equation, to be 

A(LS)=  1/2mN . (24) 

Substituting (23) into (24), we have for the effective 
number of repeat elements N, 

N =  1/2nm/ced 2 . (25) 

For the first order peaks of Fig.2, the values of N are 
605 for PE, 68 for PTFE, and 12 for the A1-Zn alloy. 

Clearly, there must be limiting cases of high d or/1 
beyond which a peak can no longer be resolved. We 
obtain an approximate expression for this condition by 
reference to the intensity relation, equation (15). We 
ask for the value of d at which the peak and trough 
intensities cannot be easily distinguished. To do this, 
the values of intensity at S = l / d  and S=3/2d  are 
compared. What intensity ratio is to be used at these, 
two positions (peak and trough) is somewhat arbitrary. 
Using the condition 

Examples 

The intensity function I(s) is plotted in Fig. 2 for three 
lamellar materials of widely different absorbing power 
assuming a repeat spacing d=566/~.* The materials 
and their pertinent parameters are listed in Table 1. 
As expected, the more absorbent materials show the 
greater peak broadening at low angles, and peak 
'sharpening' at higher orders. 

Table 1. Materials and parameters used & absorption 
effect calculations 

2 =  1"54/~ 

alo 0 
Material (cm-a) (g.cm-0 (cm-Z) 

Linear polyethylene 3.95 0.95 4.88 x 108 
Polytetrafluoroethylene 13.6 2.3 40.7 x 108 
0-78 A1-0.22 Zn 53.4 3.68 256 x 108 

20,OO{2 

16,000 

12,000 
/(s) 

8,0013 

4,0013 

o 

2OO 

1150 

I(s) I 0 0 [ -  

512 

I 

PE 

I i i i ! L I I I I I 

PTFE 

The values of the broadening of the first and second 
order peaks were calculated according to the exact 
equation (15) and the approximation (23) for the curves 
of Fig.2. For all peaks the approximate value agreed 
to within fifty percent with the exact value. 

* The relative integrated intensities are not the observable 
intensities, since the absorption of the material outside the 
lamellar stack has not been accounted for. The integrated 
intensities, but not the peak shapes, will be affected by the 
added attenuation. 

io 0.78 A1-0.22Zn 

I(s) 2468 ... 

_ i i 
0 0 2  0.4 0.6 0.8 1.0 1.4 1.6 1.8 213 2 2  20. 2.6 

s d  

Fig.2. Calculated scattering curves from an unbounded 
lamellar system with d =  566/~ for polyethylene (PE), poly- 
tetrafluoroethylene (PTFE) and an AI-Zn alloy. 
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I(S= l/d) - I(S= 3/2d) 
• [ ( S = I / d )  =0.1 (26) 

to describe the critical ratio, we find for the limiting 
value of d 

de= ~/4:8_ (27) 

For the materials treated in this paper, the limiting 
repeat spacings are 9490 A for PE, 3430/~ for PTFE, 
and 1370 ,~ for the AI-Zn alloy. 

Discussion 

In order for a material to show this effect, the plates 
need not be broad. For the case of a stack or colony of 
lamellae embedded in a matrix of the same average 
electron density, the results still hold, with the proviso 
that the amplitude function be corrected for the finite 
platelet width. (The effect of less broad lamellae is 
itself to broaden the diffraction peaks.) 

If the real number of elements in the stack is 
limited, one needs to solve the exact equation (14). In 
this case, the numerator can no longer be set equal to 
unity. Calculations for finite stacks are beyond the 
scope of the present work. It is expected, however, that 
the results will be similar to those for the larger aggre- 
gates. 

The limiting values of d calculated here indicate that 
advances in low angle resolution to d's in excess of 
1/~ will be of limited help in studying lamellar systems. 
It is, for example, evident that the band structure in 
slowly cooled PTFE (see Geil, 1963) and most eutectic 

or eutectoid colonies in alloys cannot be observable, 
due to the combination of high/z and d. 

Conclusions 

The effect of absorption on X-ray scattering from 
lamellar stacks has been shown to produce the follow- 
ing characteristics: 

(1) Small angle diffraction peaks are broadened, 
proportionally to the linear absorption coefficient /z 
and the square of the repeat distance d. 

(2) Proceeding to mth order peaks, these should be 
sharpened relative to the first order according to 1/m. 

(3) The effective number of scattering elements 
decreases sharply with denser material. 

(4) Effective upper limits of d which can be resolved 
can be calculated. For most polymers, these values will 
be greater than 1000 A, while for metals the value will 
be of the order of hundreds of Angstr6ms. 

This work was supported in part by the National 
Science Foundation. 
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An alternative to the procedure suggested by Busing & Levy [Acta Cryst. (1967) 22, 457] for ~efining 
the crystal orientation matrix and (if desired) the crystal lattice parameters is proposed, in which linear 
observational equations are written with Miller indices as coefficients. Constraining equations appro- 
priate to the crystal symmetry (exact to first order in the corrections) are presented for monoclinic, 
hexagonal, orthorhombic, tetragonal, and cubic systems. 

In a recent paper and an associated report, Busing & 
Levy (1967a, b) have presented equations in matrix no- 
tation for single-crystal diffractometer angles in terms 

of the lattice constants and the crystal orientation 
matrix. In connection with these equations these au- 
thors have suggested procedures for refining the orien- 
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